Wiktor Koźmiński's NMR group

Biological and Chemical Research Centre, University of Warsaw

  • Increase font size
  • Default font size
  • Decrease font size
Wiktor Koźmiński's NMR Group

New Article in Journal of Biomolecular NMR

Print

Nuclear overhauser spectroscopy of chiral CHD methylene groups

Rafal Augustyniak, Jan Stanek,  Henri Colaux, Geoffrey Bodenhausen, Wiktor Koźmiński, Torsten Hermann, Fabien Ferrage


Janek JBIO

Nuclear magnetic resonance spectroscopy (NMR) can provide a great deal of information about structure and dynamics of biomolecules. The quality of an NMR structure strongly depends on the number of experimental observables and on their accurate conversion into geometric restraints. When distance restraints are derived from nuclear Overhauser effect spectroscopy (NOESY), stereo-specific assignments of prochiral atoms can contribute significantly to the accuracy of NMR structures of proteins and nucleic acids. Here we introduce a series of NOESY-based pulse sequences that can assist in the assignment of chiral CHD methylene protons in random fractionally deuterated proteins. Partial deuteration suppresses spin-diffusion between the two protons of CH2 groups that normally impedes the distinction of cross-relaxation networks for these two protons in NOESY spectra. Three and four-dimensional spectra allow one to distinguish cross-relaxation pathways involving either of the two methylene protons so that one can obtain stereospecific assignments. In addition, the analysis provides a large number of stereospecific distance restraints. Non-uniform sampling was used to ensure optimal signal resolution in 4D spectra and reduce ambiguities of the assignments. Automatic assignment procedures were modified for efficient and accurate stereospecific assignments during automated structure calculations based on 3D spectra. The protocol was applied to calcium-loaded calbindin D9k. A large number of stereospecific assignments lead to a significant improvement of the accuracy of the structure.

 

New Article in Journal of Biomolecular NMR

Print

High resolution 4D HPCH experiment for sequential assignment of 13C-labeled RNAs via phosphodiester backbone

Saurabh Saxena, Jan Stanek, Mirko Cevec, Janez Plavec, Wiktor Koźmiński


SS4D jBio

The three-dimensional structure determination of RNAs by NMR spectroscopy requires sequential resonance assignment, often hampered by assignment ambiguities and limited dispersion of 1H and 13C chemical shifts, especially of C4′/H4′. Here we present a novel through-bond 4D HPCH NMR experiment involving phosphate backbone where C4′–H4′ correlations are resolved along the 1H3′–31P spectral planes. The experiment provides high peak resolution and effectively removes ambiguities encountered during assignments. Enhanced peak dispersion is provided by the inclusion of additional 31P and 1H3′ dimensions and constant-time evolution of chemical shifts. High spectral resolution is obtained by using non-uniform sampling in three indirect dimensions. The experiment fully utilizes the isotopic 13C-labeling with evolution of C4′ carbons. Band selective 13C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the C4′–C3′ and C4′–C5′ homonuclear couplings. Multiple quantum line narrowing is employed to minimize sensitivity loses. The 4D HPCH experiment is verified and successfully applied to a non-coding 34-nt RNA consisting typical structure elements and a 14-nt RNA hairpin capped by cUUCGg tetraloop.

 

The FEBS Journal Poster Prize

Print

Saurabh Saxena was awarded with The FEBS Journal Poster Prize at ISMAR 2015 conference in Shanghai. Congratulations!

 

New Article in Journal of Biomolecular NMR

Print

Six- and seven-dimensional experiments by combination of sparse random sampling and projection spectroscopy dedicated for backbone resonance assignment of intrinsically disordered proteins

Szymon Żerko, Wiktor Koźmiński


coh trans pathway

Two novel six- and seven-dimensional NMR experiments are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in four indirectly detected dimensions and synchronous sampling in the additional dimensions using projection spectroscopy principle. The resulted data sets could be processed as five-dimensional data using existing software. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel experiments were successfully tested using 1 mM sample of α-synuclein on 600 and 800 MHz NMR spectrometers equipped with standard room temperature probes. The experiments allowed backbone assignment from a 1-day acquisition.

 

New Review in Progress in Nuclear Magnetic Resonance Spectroscopy

Print

Applications of high dimensionality experiments to biomolecular NMR

Michał Nowakowski, Saurabh Saxena, Jan Stanek, Szymon Żerko, Wiktor Koźmiński


Full-size image (11 K)

High dimensionality NMR experiments facilitate resonance assignment and precise determination of spectral parameters such as coupling constants. Sparse non-uniform sampling enables acquisition of experiments of high dimensionality with high resolution in acceptable time. In this review we present and compare some significant applications of NMR experiments of dimensionality higher than three in the field of biomolecular studies in solution.

 


Page 7 of 11






Banner
Banner
Banner

Conferences organized

by us:


 

euromar 2017 logo

 


 

mmcebanner3

 


 

AUM4

 


We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set.

I accept cookies from this site.