Wiktor Koźmiński's NMR group

Biological and Chemical Research Centre, University of Warsaw

  • Increase font size
  • Default font size
  • Decrease font size
Wiktor Koźmiński's NMR Group

New Article in Journal of the American Chemical Society

Print

Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective

Maria Baias, Pieter E. S. Smith, Koning Shen, Lukasz A. Joachimiak, Szymon Żerko, Wiktor Koźmiński, Judith Frydman, Lucio Frydman


htt

Many neurodegenerative diseases are characterized by misfolding and aggregation of an expanded polyglutamine tract (polyQ). Huntington’s Disease, caused by expansion of the polyQ tract in exon 1 of the Huntingtin protein (Htt), is associated with aggregation and neuronal toxicity. Despite recent structural progress in understanding the structures of amyloid fibrils, little is known about the solution states of Htt in general, and about molecular details of their transition from soluble to aggregation-prone conformations in particular. This is an important question, given the increasing realization that toxicity may reside in soluble conformers. This study presents an approach that combines NMR with computational methods to elucidate the structural conformations of Htt Exon 1 in solution. Of particular focus was Htt’s N17 domain sited N-terminal to the polyQ tract, which is key to enhancing aggregation and modulate Htt toxicity. Such in-depth structural study of Htt presents a number of unique challenges: the long homopolymeric polyQ tract contains nearly identical residues, exon 1 displays a high degree of conformational flexibility leading to a scaling of the NMR chemical shift dispersion, and a large portion of the backbone amide groups are solvent-exposed leading to fast hydrogen exchange and causing extensive line broadening. To deal with these problems, NMR assignment was achieved on a minimal Htt exon 1, comprising the N17 domain, a polyQ tract of 17 glutamines, and a short hexameric polyProline region that does not contribute to the spectrum. A pH titration method enhanced this polypeptide’s solubility and, with the aid of ≤5D NMR, permitted the full assignment of N17 and the entire polyQ tract. Structural predictions were then derived using the experimental chemical shifts of the Htt peptide at low and neutral pH, together with various different computational approaches. All these methods concurred in indicating that low-pH protonation stabilizes a soluble conformation where a helical region of N17 propagates into the polyQ region, while at neutral pH both N17 and the polyQ become largely unstructured—thereby suggesting a mechanism for how N17 regulates Htt aggregation.

 

Congratulations!

Print

Congratulations to Saurabh Saxena on defending Ph.D. thesis entitled New NMR experiments for nucleic acids and intrinsically disordered proteins.

 

New Article in Scientific Reports

Print

Metal-coupled folding as the driving force for the extreme stability of Rad50 zinc hook dimer assembly

Tomasz Kochańczyk, Michał Nowakowski, Dominika Wojewska, Andrzej Ejchart, Wiktor Koźmiński, Artur Krężel


MichalZinkjpg

The binding of metal ions at the interface of protein complexes presents a unique and poorly understood mechanism of molecular assembly. A remarkable example is the Rad50 zinc hook domain, which is highly conserved and facilitates the Zn2+-mediated homodimerization of Rad50 proteins. Here, we present a detailed analysis of the structural and thermodynamic effects governing the formation and stability (logK12 = 20.74) of this evolutionarily conserved protein assembly. We have dissected the determinants of the stability contributed by the small β-hairpin of the domain surrounding the zinc binding motif and the coiled-coiled regions using peptides of various lengths from 4 to 45 amino acid residues, alanine substitutions and peptide bond-to-ester perturbations. In the studied series of peptides, an >650 000-fold increase of the formation constant of the dimeric complex arises from favorable enthalpy because of the increased acidity of the cysteine thiols in metal-free form and the structural properties of the dimer. The dependence of the enthalpy on the domain fragment length is partially compensated by the entropic penalty of domain folding, indicating enthalpy-entropy compensation. This study facilitates understanding of the metal-mediated protein-protein interactions in which the metal ion is critical for the tight association of protein subunits.

 

New Article in Journal of Biomolecular NMR

Print

Amino acid recognition for automatic resonance assignment of intrinsically disordered proteins

Alessandro Piai, Leonardo Gonnelli, Isabella C. Felli, Roberta Pierattelli, Krzysztof Kazimierczuk, Katarzyna Grudziąż, Wiktor Koźmiński, Anna Zawadzka-Kazimierczuk


amino selective

Resonance assignment is a prerequisite for almost any NMR-based study of proteins. It can be very challenging in some cases, however, due to the nature of the protein under investigation. This is the case with intrinsically disordered proteins, for example, whose NMR spectra suffer from low chemical shifts dispersion and generally low resolution. For these systems, sequence specific assignment is highly time-consuming, so the prospect of using automatic strategies for their assignment is very attractive. In this article we present a new version of the automatic assignment program TSAR dedicated to intrinsically disordered proteins. In particular, we demonstrate how the automatic procedure can be improved by incorporating methods for amino acid recognition and information on chemical shifts in selected amino acids. The approach was tested in silico on 16 disordered proteins and experimentally on α-synuclein, with remarkably good results.

 

New Article in Journal of Biomolecular NMR

Print

Nuclear overhauser spectroscopy of chiral CHD methylene groups

Rafal Augustyniak, Jan Stanek,  Henri Colaux, Geoffrey Bodenhausen, Wiktor Koźmiński, Torsten Hermann, Fabien Ferrage


Janek JBIO

Nuclear magnetic resonance spectroscopy (NMR) can provide a great deal of information about structure and dynamics of biomolecules. The quality of an NMR structure strongly depends on the number of experimental observables and on their accurate conversion into geometric restraints. When distance restraints are derived from nuclear Overhauser effect spectroscopy (NOESY), stereo-specific assignments of prochiral atoms can contribute significantly to the accuracy of NMR structures of proteins and nucleic acids. Here we introduce a series of NOESY-based pulse sequences that can assist in the assignment of chiral CHD methylene protons in random fractionally deuterated proteins. Partial deuteration suppresses spin-diffusion between the two protons of CH2 groups that normally impedes the distinction of cross-relaxation networks for these two protons in NOESY spectra. Three and four-dimensional spectra allow one to distinguish cross-relaxation pathways involving either of the two methylene protons so that one can obtain stereospecific assignments. In addition, the analysis provides a large number of stereospecific distance restraints. Non-uniform sampling was used to ensure optimal signal resolution in 4D spectra and reduce ambiguities of the assignments. Automatic assignment procedures were modified for efficient and accurate stereospecific assignments during automated structure calculations based on 3D spectra. The protocol was applied to calcium-loaded calbindin D9k. A large number of stereospecific assignments lead to a significant improvement of the accuracy of the structure.

 

New Article in Journal of Biomolecular NMR

Print

Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein

Szymon Żerko, Piotr Byrski, Paweł Włodarczyk-Pruszyński, Michał Górka, Karin Ledolter, Eliezer Masliah, Robert Konrat, Wiktor Koźmiński


5Ds

New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use in the case of large IDPs (application to 354 a. a. residues of Tau protein 3x isoform is presented) as well as provide both forward and backward connectivities. What is more, connecting short chains interrupted with proline residues is also possible. All the experiments employ non-uniform sampling.

 

New Article in Journal of Biological Chemistry

Print

Biochemical and structural characterization of the interaction between the Siderocalin NGAL/LCN2 and the N-terminal domain of its endocytic receptor SLC22A17

Ana-Isabel Cabedo Martinez, Katharina Weinhaupl, Wing-Kee Lee, Natascha A. Wolff, Barbara Storch, Szymon Żerko, Robert Konrat, Wiktor Koźmiński, Kathrin Breuker, Frank Thévenod, Nicolas Coudevylle


JBC nico

The neutrophil gelatinase associated lipocalin (NGAL, aslo known as LCN2) and its cellular receptor (LCN2-R) are involved in many physiological and pathological processes such as cell differentiation, apoptosis and inflammation. These pleiotropic functions mainly rely on NGALs siderophore mediated iron transport properties. However the molecular determinants underlying the interaction between NGAL and its cellular receptor remain largely unknown. Here, using solution-state biomolecular NMR in conjunction with other biophysical methods, we show that the N-terminal domain of LCN2-R is a soluble extracellular domain that is intrinsically disordered and interacts with NGAL preferentially in its apo-state to form a fuzzy complex. The relatively weak affinity (≈ 10μM) between hLCN2-R-NTD and apoNGAL suggests that the N-terminus on its own cannot account for the internalization of NGAL by LCN2-R. However, hLCN2-R-NTD could be involved in the fine-tuning of the interaction between NGAL and its cellular receptor, or in a biochemical mechanism allowing the receptor to discriminate between apo- and holo-NGAL.

 

New Article in Journal of Biomolecular NMR

Print

High resolution 4D HPCH experiment for sequential assignment of 13C-labeled RNAs via phosphodiester backbone

Saurabh Saxena, Jan Stanek, Mirko Cevec, Janez Plavec, Wiktor Koźmiński


SS4D jBio

The three-dimensional structure determination of RNAs by NMR spectroscopy requires sequential resonance assignment, often hampered by assignment ambiguities and limited dispersion of 1H and 13C chemical shifts, especially of C4′/H4′. Here we present a novel through-bond 4D HPCH NMR experiment involving phosphate backbone where C4′–H4′ correlations are resolved along the 1H3′–31P spectral planes. The experiment provides high peak resolution and effectively removes ambiguities encountered during assignments. Enhanced peak dispersion is provided by the inclusion of additional 31P and 1H3′ dimensions and constant-time evolution of chemical shifts. High spectral resolution is obtained by using non-uniform sampling in three indirect dimensions. The experiment fully utilizes the isotopic 13C-labeling with evolution of C4′ carbons. Band selective 13C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the C4′–C3′ and C4′–C5′ homonuclear couplings. Multiple quantum line narrowing is employed to minimize sensitivity loses. The 4D HPCH experiment is verified and successfully applied to a non-coding 34-nt RNA consisting typical structure elements and a 14-nt RNA hairpin capped by cUUCGg tetraloop.

 


Page 4 of 7






Banner
Banner
Banner

Conferences organized

by us:


 

euromar 2017 logo

 


 

mmcebanner3

 


 

AUM4

 


We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set.

I accept cookies from this site.